ESPRESSIONI CON FRAZIONI CON LE POTENZE
PARENTESI TONDE e QUADRE

In questa categoria sono presenti 50 esercizi. CATEGORIA SUCCESSIVA - ELENCO GENERALE

LE REGOLE DICONO CHE...
Devi eseguire prima le operazioni dentro le parentesi tonde e poi le operazioni dentro le parentesi quadre(prima le potenze poi le moltiplicazioni e le divisioni, una dopo l'altra nell'ordine in cui sono scritte, poi le addizioni e le sottrazioni, una dopo l'altra nell'ordine in cui sono scritte). Poi, eliminate le parentesi, devi eseguire prima le moltiplicazioni e le divisioni, una dopo l'altra nell'ordine in cui sono scritte, infine le addizioni e le sottrazioni, una dopo l'altra nell'ordine in cui sono scritte.

Clicca su un'espressione per svolgerla on-line con il nostro sistema di autocorrezione

n.949   `[(1/2)^4:(1/2)^3]^3*2^2 = 1/2`

n.38   `[(25/100+3/9)*12/10]^2*100 = 49`

n.819   `[(5/7)^2*5/7]^2*(7*7^2)^2:5^6 = 1`

n.947   `[(3-1/3+3/2)^2-(1/2-1/3)^2]:26 = 2/3`

n.23   `[4/3+5/9+1-(3-4/3)^2]^2*3/5:1/30 = 2/9`

n.946   `[2/7*(3-5/4)]^2-[5/2*(4/5-2/3)]^2 = 5/36`

n.904   `15/16+[(3/2-1/4)^2:5/4-(1/2+1/4)^2] = `

n.909   `[1/3-(3/5-1/10)^2]*3/5:1/2+7/4:5/2-4/5 = 0`

n.934   `[(3/4)^3*(3/4)^2]^2:(3/4)^8+3/4+7/4+2/3 = `

n.936   `[(4/5)^3*(4/5)^2]^2:(4/5)^9+4/5+4/5-1/2 = `

n.932   `[(1/2)^2:(1/2^3]*[3/2-(4/9)^2:(1-5/9)^2] = `

n.822   `[(2/3)^6*(6/5)^6]^4:[(16/25)^3*(5/4)^3]^8 = 1`

n.922   `[(1/3-7/33)^2:(1/11)^2]+(11/9)^4:(11/9)^3 = `

n.910   `10/23*[(2/7:7+5/49)^2:1/7-(1/2-1/3)^2:5/6] = 1/21`

n.913   `[(5/8-1/8)^4-(2/11*22/3-1)^4]]:(1/4+1/9)*6/5 = 1/6`

n.834   `(3-1/4):[(2/5+1/2-5/6)^2*(7/5+1/10+7/2)^2]:9/2 = 11/2`

n.906   `[2-1/3*(7/10+1/2)]^2+[1-(1/6+1/3)]+(1/2+3/4)^2 = `

n.950   `[(3/4)^3(2/15)^3]:[(1/10)^5*(1/10)^3:(1/10)^6] = 1/10`

n.896   `[(7/9)^14:(7/9)^10]^2:[(7/9)^3*7/9*(7/9)^3]+7/9 = `

n.915   `[(1/2+3/4-1)^2:3/16+3/2+(1/4-1/5)*(15/3*4)]:1/3 = 17/2`

n.941   `(1/2)^0+[(3/2-1/4)^2-(1-1/4)^2]:(3/2)^2-(1/2)^1 = `

n.835   `1/2+[1/2+(1/2+2/6):10/8]:(3/2)^2-(1/2)^4:(1/2)^3 = `

n.914   `[(7/13*26/21)^3-(7/5:14/5)^3]:[(2/3)^2+2/3:2+1/4] = 1/6`

n.952   `[(2/3)^4*(2/3)^0]:[2/3*(2/3)^2]+[(15/2)^3:(15/2)] = `

n.944   `(1/2)^6:(1/2)^4:(1/2)^2+[1/2)^2]^2+(1/2)^0-(1/2)^1 = `

n.938   `[(2/3)^3:(4/3)^3+7/8*(1/4)^0]^2:(7/8)^1-1/7+4/5-1/2 = `

n.836   `[(3/2-3/4)^3*(8/9)^2+(2/3+1/2+1/6)^2*3/16]*(1+1/2)^2 = 3/2`

n.886   `[(2/5)^10:(2/5)^6]^2*[(2/5)^8:(2/5)^3]+[(2/5)^10*2/5] = `

n.892   `[(1/2)^2]^3*[(1/2)^3]^3:[(1/2)^3]^4+[(1/2)*(1/2)^3]^2 = `

n.908   `[(1/2+1/3)^2:(1+1/4)^2]+[(4/21:8/7+12/7:3/7):(2-7/6)] = `

n.894   `[(1+1/2)^2:5/4+9/5*(2-4/3)^2]+(2-3/5)*1/7-(1-1/2)^3:5/8 = `

n.929   `(3-10/7):[(1+1/2)-(1-1/3)^2*(3/20+6/35)]:[11/3-(1-1/3)] = 22/59`

n.940   `[(1/4)^2:(1/4)^2+(1/2)^2]+4/3-[(4/3)^3:(4/3)^2-(1/2)^1] = `

n.890   `1/2+[(1+4/3)^4*(1-2/7)^4]^2+[(3+2/3)^8:(1+1/2+7/10)^8]^2 = `

n.820   `[(1/2)^5*(1/2)^2:(1/2)^2]^2:[(1/2)^4*(1/2)^6:(1/2)^3]:1/8 = 1`

n.919   `[(1/3)^2:(1/6)^2]*[(1/2)^4:(1/15:4/15)]:[(3/2)^2-(1-1/2)] = 4/7`

n.826   `[(1/2-1/3)^4:(1/2+1/3)^4]*[(3/5-2)^4:(1-2/5)^4]*[(5-5/7)]^4 = 16`

n.837   `[(15/9-1/3)^2-(1-1/3)^2:3/9]:[16/81:16/27+(1/9)^2:2/30+4/27] = 2/3`

n.902   `[(3+1/2-5/3)*(1/2)^2]+3/2-[2/3+(2/11+5/22+7/33):82/33+1/12]^5 = `

n.928   `(1/8+1/4)+[3+(1/3)^4:(1/3)^3]+[(1/3)^0+(1/3)^5:(1/3)^4]*(1/2)^3 = `

n.931   `[(1/3)^3:(1/3)^2*(1/3+1/2):5+(1/9)^4:(1/9)^3]*1/3+5/6-(1-2/3)^2 = 7/9`

n.930   `[25/90*(2/5)^3:(2/5)^2+1/2*(1/3)^4:(1/3)^3]:[(1+2/3-11/9)^2:4/9] = 5/8`

n.900   `[19/12:(3/4+5/6)]+[15/3+3/8-(1/2)^3-9/2]:[(4/5)^2+3/20-(1/5)^2]+5 = `

n.918   `[(2+2/3)-(1/3+3/4-5/6):(1+1/2)^2]:[(1-2/5)^2*(5/3)^2+7/2*(1/3)^2] = 46/25`

n.942   `(2/3+2/6)^1+[(3/5-1/10)^2:(1-1/3)^2]-(1/2+2/3)^0-(5/16)^5:(5/16)^4 = `

n.884   `[(3/4)^3:(3/4)^2:(3/4)-(2-2/3)^2:(13/6+1/2)-(1/7-1/21)]:(1/3+3/4-13/84) = 10/39`

n.917   `(1-3/7)*[2/29*(11/5-3/4)+(3/20+4/15-3/8)^2:(1/3-1/4)^2]:(4/5)^2+(1-1/2)^2 = 9/16`

n.924   `[(5/3)^2*(1-1/2)*(1+1/5)^2*(1+1/2)-3/4]:(5/2)^2-(1/5)^2+[(2/5)^3:(2/5)^2]-1/20 = `

n.925   `[(1-2/7)*(2/7+19/7):(1-4/7)+(3-4/3)^2+(2-1/2)^2]:(3+1/6)^2+(5-7/2)^2-(7-13/2)^2 = 3`

n.887   `[(2/3)^2:(4/3)^2+(1/3)^3:(1/3)^2]+(1/2)^4:(1/2)^2-(2/3)^5:(2/3)^4+(4/3)^3:(4/3)^3-(7/2)^0 = `